This section is from the book "Airplane Photography", by Herbert E. Ives. Also available from Amazon: Airplane photography.
The process of focussing aerial cameras was at first deemed a mystery, though undeservedly so. A belief was long current that "ground" focus and "air" focus differ. In other words, that a camera focussed upon a distant object on the ground would not be in focus for an object the same distance below the camera when in the plane. Belief in this mysterious difference went so far that certain instruction books describe in detail the process of focussing a camera by trial exposures from the air.
Careful laboratory tests performed for the U. S. Air Service showed that neither low temperature nor low pressure, such as would be met at high altitudes, alter the focus of any ordinary lens by a significant amount, and that the possible contraction of the camera body was of negligible effect on the focus (not more than 21ro Per cent, per degree centigrade with a metal camera). In complete harmony with these tests has been the experience that if the ground focussing is done carefully, by accurate means, then the air focus is correct. The whole matter thus becomes one of precision focussing.
The best method, applicable if the air is steady, is to focus by parallax. The ground glass focussing screen is marked in the center with a pencilled cross. Over this is mounted, with Canada balsam, a thin microscope cover-glass. The camera is directed on an object a mile or more away, and the image formed by the lens is examined by a magnifying glass through the virtual hole formed by the affixed cover-glass. With the pencil line in focus the head is moved from side to side. If the image and pencil mark coincide they will move together as the head is moved. If the image moves away from the pencil mark and in the same direction as the eye moves, the image is too near the lens. If the image moves away in the opposite direction to the motion of the eye, it is too far from the lens. In either case the focus is to be corrected accordingly.
In place of a distant object, which may waver with the motion of the air, we may use an image placed at infinity by optical means. The collimator, an instrument for doing this, consists of a test object (lines, circles, etc.) placed accurately at the focus of a telescope objective. The camera lens is placed against this and focussed by parallax, as with a distant object. Collimators are employed in camera factories, and should be part of the equipment of base laboratories where repairing and overhauling of cameras is done.
 
Continue to:
camera, lens, airplane, aerial, film, exposure, photography, maps, birdseye