Because of the inherent properties of the glass of which it is made, a simple collective lens does not behave in the same way with respect to light of different colors. If one attempts, with such a lens, to focus upon a screen the image of a distant white light, it will be found that the blue rays will not focus at the same point as the red rays, but will come together nearer the lens. Modern photographic lenses are compounded of two or more kinds of glass in such a way as to largely eliminate this defect, the presence of which is detrimental to good definition. Such lenses are called achromatic, and the property of a lens by virtue of which this defect is eliminated is called its chromatic correction.

Chromatic correction is never perfect, but two colors of the spectrum can be brought to a focus in the same plane, and to a certain extent the departure of other colors from this plane can be controlled. Off the axis of the lens outstanding chromatic aberration results in a difference in the size of images of different colors, known as lateral chromatism.

Like spherical aberration, chromatic aberration is a contributing factor to the size of the image of a point source, which determines the defining power of a lens. It is, however, an error whose effect is to some extent dependent on the kind of sensitive plate used. Two lenses may give images of the same size (in so far as it is governed by chromatic aberration), if a plate of narrow spectral sensitiveness is used, while giving images of different size on panchromatic plates of more extended color sensibility. The choice of the region of the spectrum for which chromatic correction is to be made is thus governed by the color of the photographically effective light. While in ordinary photography the blue of the spectrum is most important, in aerial work where color filters are habitually used with isochromatic plates the green is most important, and color correction centered about this region constitutes a real difference of design peculiar to aerial lenses. Similarly the general use of deep orange or red filters with red sensitive plates, for heavy mist penetration, would call for a shift of correction to that part of the spectrum.